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Limit Probabilities in a Multi-type

Critical Age-Dependent Branching Process

by

Howard J. Weiner

I. Introduction and Assumptions

Let
(1.1) Zij(tl = the number of cells of type j at time ¢ starting with
one new-born cell of type i at t =0 with 1 <i <m in an m-type
critical age-dependent branching process described as follows.
At time t = 0, one newly born cell of type i starts the process, for
some 1 <1 <m. The cell lives a random time described by a continuous

distribution function
{1.2) Gi(t)’ Gi(0+) = 0,

At the end of its life, cell i is replaced by jl new daughter cells of
type 1, jz new cells of type 2,...,3’m cells of type m with probability
Pooow s .
1393pd5e-3
Define the generating functions, for s = (Sl”'°’sm)’ i-= (jl""’jm)’

s ) j
gl = (s1 ,...,szm),

i
_ _ | 1, o i
{(1.3) hi(sl"°°sm) _hi(i) = = . Pij ee 81 s =z Piig .
(J]_...Jm) 1 m l



Each daughter cell proceeds independently of the state of the system,

with each cell type j governed by G, (t) and'hj'(g).

3

Assume, for 1+€¢ = (1+€,...,1+¢) and 1 = (1,...,1), m-vectors,
{1.4) hi(l +e) <@ for 1<i<m.

This insures that all moments of hi(g) evaluated at s = 1 may be
computed by partial differentiations under the summation sign.

Define, for 1 < i, j < m,

ahi(_g)
(1.5) ~ m,, = ———— = h,..()
. ij asj s=1 ij
and assume
(1.6) mij >0 all 1<1i, j<m,

and let the first moment m Xm matrix be
(1L.7) M= (m,.).

By standard Frobenius theory [2], there is a largest eigenvalue in
-absolute value, denoted p, which is positive.

The basic assumption of criticality is that

(1:8) p=1.

It follows again from standard Frobenius theory [2] that there are
strictly positive eigenvectors u > 0, v > 0 (no notational distinction

between row and column m-vectors) such that



(1.9) Ma = g

M= v
1 = 1

E _,E Eu_:
i=1
m

u'v 2 fu,v, =1,

= - . ii
i=1

Let the quantity denoted by Q(u) satisfy

(110)‘ 0<qu =% 5 % ;muuv<°°
, T2 5o g pe1 050, AT
and also

3%h, (1)
(1.11) é—s—fﬁ>o 1<i, j,k<m.

Further assume that each distribution function*Gi(t) satisfies

[+>]

(1.12) f %746, (£) < ® for some § > 0.
. 0 i
Let
(1.13) 0<;.1,i Ejotd(;i(t) < @
and denote
Z,,(t) Z.,() Z, (&)
(1.14) Fi(_s_,t) =g [Slll 5212 Smlm J
Let
(1.15) Zi(t) = (Zil<t)’zi2(t)"”’zim(t))
Let
(1.16) gl_i(t) = (Nil(t),Niz(t),...,Nim(t))



denote the m-vector with entries

(1.17) Nij(t) = total progeny of type j born by t in the above

critical m-type process starting with one new cell of type 1i.

Denote

(1.18) Hi(i,t)

it

] [Swﬂ(t)sniz(t)m SNim(t)]
1 2 m '

For k = (kl,...,km) a vector of non-negative integers, it is to be

shown that as t = =

= ~ L
(1.19) P{__Z_i(t) -l{_] t2
for k # 0, and
(1.20) PIN,(t) =k] ~ ¢ > 0,

[3

where the constants c may be found by a recursive method.

II. Integral Equations and Approximations

Denote
’ m
(2.1) P, (t) = P[Z,(t) > 0] = (E uyvilu /o),
where 0 = (0,...,0) and u > v means term by sterm strict inequality for

vectors, and

1 2 m om
(2.2) QW =3 Z ¥ Th,, (Duuv, < o,
2 i=1 r=1 £=1 idr Lri
See [3].



Denote by 1 - P(t) the m-vector

(2.3) 1-P() = (1-P1(t),1 ~Pé(t),...,1-Pm(t)),

Theorem 1. Under the assumptions of section I, for k = (

kl,...,km) an

m-vector of non-negative integers not all of whose terms are zero, for

T = @

(2.4) PlZ(0) = kI ~ 5
t

where ¢ > 0 is a constant depending on k, i.

Proof. First consider the case k = gj, that is, k = gj = (0,0,...01..00)

vhere the 1 is in the jth place, all other places have a zero.

From {3]

t
2.5) F,(s,8) = s (1-G, (£)) + J.Ohi(g‘_(_s_,t-u))d(}i(u),

where

(2.6) CF(s,t) = (Fy(8,8),F, (5,8) .. .F_(s,1)).

Under the assumptions of the Theorenm,

oF, (s,t)

2.7) Pij t) = _E:T

Applying (2.7) to (2.5) yields, for 6ij the Kroneker delta,

t m
(2.8) By (6) = 8, (1-6, () + fo I by gE(Q,£-u))P y; (e-u)dGy (),

alll<i, j <m



The proof for the ij(t) will continue by a series of claims.

Claim I. For arbitrary ¢ > 0, b > 0, sufficiently large T > 0,
the functiouns Qij(t) defined for 1 <1, i <m by
~(2-¢€)

cu.t s £>T

2.9) Q4 (0) =
b , £ <T

for some 0 < € < 1, satisfy, for all 1 < i, j < m, and all t sufficiently
large,

m
(2.10) izlviqij () > vy (I-GJ. ()

+ Z A 2 h; ,(F(0),t-u))qQ,, (t- u)dG (u).
‘[0 i=1 ‘4=1 it 43

Proof of Claim I. Writing the integral term on the r.h.s. of (2.10) as

£/2 '
I + I for t >2T, note that by (2.9), a Taylor expansion of h, , about

il
1, and a Newton expansion of (tnu)-(zﬂe)' -(3-¢)

until the power t yields, as

(2.11) F(0,t-u) = 1-P(t-u),

: J.t/2 m m m m
(2.12) Tv, Z |h,,Q1) - ZP (t-u)h, (L) +o(ZP_(t))
0 i=1 g=1| T e T o r=1 * :l

cu
£ S/
X — e dGi (u) + o(x )

} (t-u)

- (3-¢)

for some 6 > 0, and hence (2.10) equals, to terms of order t



/2 m cu
2.13) Jx E v, [}793 (1,+£Z%§23 + o(%))l ac, (u)
0 i=11]¢

m ®m m m
(Z £ ZTv,u,uh O Z u,v )
) jt/Z i=1 re1 f=1 i 4 ilr qop L 1 i
0 t(3-6)

dg, (u) + o(t'(3"e))
Q(u) t

using (1.9), (2.1), (2.2).

- (4-6)

(2.14) 1-G_(£) = o(t ) forl<r<m

—(3+6))

/2
(2.15) Jt udG, (u) = U, + o(t for 1 <i < m,
0 i i ==

use of (2.14), (2.15) in (2.12), (2.13) yields the result of the Claim I.

Claim IT. If for 1 <i, j < m, Rij(t) are differentiable and

(2.16) Rij 0 =0
m E m m
2.17) _Z V.Rz.(t) > f v, X h.z(l-Pgtnul)Rﬁj(t~u)dGi(u)

i=1 P (Y0 i1 et
for all t sufficiently large, then

m
(2.18) Lv.R () >0
i=1 *

for all t sufficiently large.

Proof of Claim II. Expand hiz(l-Pgt—ug) in a Taylor expansion about hiz(l)’

The r.h.s. of (2.17) becomes, after splitting the integral into two parts

L

t/2



i ~MB8

J.t/2 m ™
(2.19) Elvi [%iz(l) - Z Pr(t—u)hiﬁr(l) + o(

P (£t/2)) | R,, (£-u)dG, (u)
0 i r=1 r=1 * ] £ 1

1

+ o(t_(4+6)),

which simplifies by (1.9), and plugging back into (2.17), where we now let

m
2.20 R,(t) = Zv,R,. (t),
(2.20) NCRIEAL O

that, for all t sufficiently large, assuming (say) the upper imequality in

2.17),
t
(2.21) Rj(t) > J()Rj(t-u)dGi(u).
and
(2.22) -Rj(O) = 0,

il
o

First note that from (2.21), it cannot be the case that Rj(t)
on any interval [0,T]. For if so, set t =T in (2.21) to obtain 0 > 0,
a contradiction.

Suppose now that there is a first to > 0 such that Rj(to) = 0,
Rj(t) #0, t< t - Set t = £ in (2.21) to obtain a contradiction if,
in fact, Rj(t) >0 for t < to. If Rj(t) <0 for t < to’ by continuity
there is a T < t_ such that IRj(T)! > ‘Rj(t)] all t <t . Sett=Tin
(2.21) to obtain an immediate contradiction.

This contradiction yields that Rj(t) # 0, t > 0. Hence if the upper
inequality of (2.18) fails, it must be that Rj(tj < 0, all t > 0. Again,

for any interval [0,t.], there is a t2 < t, such that ‘R(tz)l > \R(t)l, t<t

1 1°



Set t = t2 in (2.21) to obtain a contradiction. This suffices to prove

Claim II, as the argument for the lower inequality is similar.

Claim III. The functions defined for arbitrary a > 0, b > 0, T > 0,
(2.23) Rij(t) =
satisfy, for 1 < i, j < m, the system

m .
(2.24) Rij (t) = fij () + f: glhiz(_l_-g(t-uz)sz (t~u)dGi (u)

where, as t - @,

(2.25) , () = o(t™3y.

Proof of Claim ITI. The integral on the r.h.s. of (2.24) with (2.23)

substituted becomes, after a Taylor expansion sbout hiﬁ(l)’ less than

or equal to

bu, -
J
5 dGi(u)

/2 m m m
(2.26) f T (b, ,(1) - E P_(t-u)h,, (1) + o T P_(t/2)))
0 =1 4 r=1 T ibr r=1 T (t-u)

+ G(t) - G(t/2)

and similarly, the integral on the r.h.s. of (2.24) is greater than or equal

to the integral term of (2.26).



The integral in (2.26) equals

.. m
t/21u m m hiﬂr(l)( Z “auava)uruﬂ
(2.27) b —%(1+g§+o(—:‘;)) -z E ozl 3

0 t 2=1 r=1 Q{u)t

X dGi(u)

3

+o(t 7).

Since

t/2 -3
(2.28) J; udGi(u) = ui +o(t 7)),

and

(2.29) o(t) - G(t/2) = o(t™™)

5
this suffices for the proof of Claim III,
The proof of Theorem I may now be completed,

Define the iterative sequence for m = 0,1,2,...

m

: : t
(2.30) P(n+l)ij(t) = 6ij(1—Gi(t)) +J; izlhiz(l—Pgt—u))P(n)zj(t-u)dGi(u)

- with

(2.31) P(O)(t) = P(O)ij(t) = for t sufficiently large.

|
=
N
e
—~
(a3
~
]
NI
“

Then, suppressing the i,j part of the subscript,

(2.32) (£) = P gy (®)] = !aij(l—Gi(t)) - £ ©] = o™,

L

which implies that

10



eu,
(2.33) P(l)ij(t> ~ =5 for some ¢ > Q.

Assume, by an induction hypothesis, that, for some constant ¢ (the

value of ¢ may change from expression to expression)
cu,

2,34 SO .

(2,34) Pogyii(e) 2 for 0 < £ < n-1,

Then, by (1.9),

/2 m
(2.35) ]P(n)ij(t)-y(n_l)ij(t)lgif; ﬁlh p(L=B(t-u))P _w&j(t-u)dci(u)-gn_l)ij(t)l

+ 2b(1-G(t/2)).

Again by (1.9) and a Taylor expansion about hiz(l)

Jt/z m m
(2.36) ‘P(n)ij(t) " ne1)i; )] < | . zzl[ FIes -IEiP (t=wh, , (1)

m

+o( 2 Pr(t/2))] P(n-l),@“(t'u)dci(u) (n-1)1j () 1 +2b(1-G(t/2))
r=1 J

or

u ™~ B

L ,o,(”‘ Z‘P (t-wh, , (1)

Z 5 46, (u) - —2+| + 2b(1-G(t/2)),

m uz cu,
+0o( = P (£/2)) =
r (t-u) t

where the two constants labeled ¢ in (2.37) have the same value.

11



Hence

(2.38) !P (t) -P (t), < !cJ‘t/Z l_l.i.(]_ +?_l“;+o(l)) + '0 __];_)l dc

or

: 1
(2.39) 1P 15 ) = Py 5 ©1 < 0P,

which implies that, for t —= =

cu,
2. ~ —L
and
cu,
(2.41) P(n)ij(t) <5 for appropriate choice of c.
t

Claims I, II yield that for arbitrary ¢ > 0, one may write

cui
(2.42) P (8) < e

for all t.

Hence

m
(2.43) ‘Pij (t) “Playij ] < f: ﬁlhiz(l-Pgt-uQ) IP,@J- (t-u) - P (n-1y 5 (70 g, (u).

12



Denote
(2.44) Brgy () = |24 (0) -P(n>ij(t)i,
Then, using (2.40),(2.41),(2.42) in (2.43) vields
T
(2.45) | A(n) (t) < »[OA(n~1) (t:—u)c?.Gi (u)

Iterating (2.45), and denoting

(2.46) AxG = J{A(t-u)dG(u),

0
(2.47) By (®) < by x6M (6) < ™ e
where

(2.48) Gén)(t) is the n-th convolution of Gi(t)°

Let {Xz} be a sequence of I.I.D. r.v.s. each with distribution

function Gi(t), and let

o
(2.49) v Sy = X,
: i=1
Then
(n) = = -
(2.50) G, () = P[Sn <t] = P[Sn np, < t-—np.i],

13



By Chebyshev's inequality,

Var S
(2.51) Gi(n)(t) e 5 -
@p-0 T @p-o

Let n > t2+e. Then (2.47) yields, for each t,

-(2+e)
(2.52) A(n) (t) < ¢ .
Then (2.52),(2.40), yield that
_ <
(2.53) Pij (t) ~ tz

for some ¢ > 0.

Hence the theorem is proved for k = gj.

m
In general, note that for k = (kl"'°’km) and I ki = k, where k is
i=1 '
the degree of differentiation,
1 o

(2.54) Pk(t) = : ) " m Fi(§_,t) . =P[§i(t)=1_cj.
= k,lk, .0k 2 1 m s=0
1°72 ™ le °--Bsm - -

Then, successively differentiating (2.5) according to (2.54) will

yield, by Leibniz' rule for successive differentiation

m
(2.55) Pig(t) = fig(t) + jzvzflhiz(lnPgt—u})ng(t-u)dGi(u),

where fik(t) consists of sums of terms of the form

14



m BP
(2.56) J:) z ) ( SWU h11 (F(s,t-u)) L.:O) Pﬂﬂ(t—u)PrE(t-u) .o .dGi (u)

ﬁ’r’ooo—_—
where
(2.57) p <k and the sum of degrees of q, b

»"°° total less than k.

By induction, assume that for degree of

J o
IA
o

(2.58) P, (6 ~‘J% for 1 < i

t

IN
B

where ¢ > 0 may change in value.

By (2.55)-(2.58), (2.55) may be written

m
(2.59) Pig(t) = fik(t) + Jz ﬂflhiﬂ(l-Pgt»u})PEE(t—u)dGi(u)

where
(2.60) £, (t) = o(t™)
. ii_(' - i

Hence the techniques of section 2 used in the proof of the theorem
for Pij(t) may be used again, since (2.59),(2.60) is of the form (2.8).

Hence Theorem 1 is proved.

Theorem 2. Under the assumptions of section I, for k = (kl""’km) a

vector of strictly positive integers, as t — o,

(2.61) PIN, () = K] ~c >0

where the constant ¢ will depend on k,i and can be obtained by a recursive

argument. 15



Proof. Denote for 1 < i < m,

Nil(t)_&.smim(t)

(2.62) Hi(§,t) = Hi(sl,...,sm,t) = E(s1 o

The law of total probability yields

*—
(2.63) Hi(gst) = si(lnGi(t) + J;hi(ﬁ(ﬁ,tou))dGi(u)),
where
(2.64) H(s,t) = (8, (8,8),H,(8,t),.--,H_(s,t)).
Since
OH, (s,t)

(2.65) Qij(t) v = P[N, (¢) = gj],

i s=0
and note that
(2.66) Hi(Q,t) = 0,
it follows immediately that
(2.67) Qij(t) = Gij(l-Gi(t)-+hi(0)Gi(t)) ~161jhi(0)

as t - o,

16



By an induction, assume, for vector k = (kl,a..,km) of degree
m

k= 1 ki, for k <n
i=1

(2.68) Qik(t) = P{gi(t)==k] ~ c.

Then for degree r =n+l, note that, by Leibniz' rule, Qirﬁt) is the
sum of terms of the form
m 3h, (s, t-u))

(2.69) J¢ z
(4] L’r,q’. e o]

Q, (E-0)Qp(E-0)Q g (E-u)dC, (u)

asﬂasrasq-'~

possibly premultiplied by aﬁin, the Kronecker delta, each term Q with
degree k < n, (in fact the sum of all Q-degrees is < n) the induction
hypothesis applies to the Q's in the integrand of each term (2.69), as

H(0,t) = 0, it follows that

3, (H(s,t-u))
e =h,, (0, a constant.
as zasrasq S:‘.O lzrq H]

(2.70)

This discussion and (2,69),(2.70) suffices to prove Theorem 2.

I11. Remarks and Extensions.

The analog of Claim III in one dimension could have been used to
simplify the argument of [4], and in particular, to not require the

"logt/tz" condition of [1].
u,
The argument using Claims I, II to deduce that Pij(t) < Zte could have
t

been omitted, and it would have sufficed to note that

Pik(t) < Pi(t) = P[Zi(t) > 0] «l%', but Claims I, II make the method self-

contained and show how finer estimates can be easily obtained.

17



The arguments of this paper can be easily extended to obtain asymptotic

marginal probabilities as follows.

Theorem III. Under the assumptions of section I, for I a subset of the

integers {1,2,...,m}, as t —+ ®

. = £
(3.1 P[Zij(t) =kj, all j € I] ~ P[Z, (t) =k] ~ 2

where kj >0 for j €1,

(3.2) ko= (R 8y p0ky By pen sk 8 )
and
1 if i €1
(3.3) 5. =
il 0 if i £1.

Also, as t = @,

3.4 P[N,.(t) =k,; all j € I] ~c > 0.
(3.4) [N, (£) =k;5 all j €1] ~c

OQutline of Proof. To prove (3.1), a modification of the Theorem 1

of [3] is required, as given by the following claim,

Claim. For I a proper subset of the integers {1,2,...,m}, as £t = o,

(3.5) PiI(t) = P[Zij(t) >0 for all j € 1] ~ P[_Z_i(t) > Q1.

18



Outline of Proof of Claim. Denote

(3.6) J

]

{1,2,...,m}

Lr = Gypsdypseensdyy)

1-1.=1_ _ = (1-6

=1 =J-I 1'52

«31-8__),

11° I S ml

Then (3.5) yields, for s =-1
(3.7) 1-2(t) = 5i(J_I>(1-Gi(t)) + fzhi(l’P11(t““)""’1‘Bm,1(t'“))dci(“)'

The argument for Pi(t) in [3] pp. 527-529, may be modified for PiI(t)
by noting that the basic idea of bounding PiI(t) above and below by
probabilities of non-extinction for appropriate one-dimensional critical
age-dependent processes, with known behavior, may be retained. A sketch

of the modifications required is as follows. Let

3.8) G (&) = max G, (t)
@ l<i<m t

G,(t) = min G, (£).
B l<i<m?®

The critical m-type processes Z&(t), Ei(t) defined on p. 528 of [3]
femain the same, both with generating functions hi(i), 1 <i<mand with
progeny lifetime distributions Ga(t), GB(t) respectively,

Then denoting by Eil(t)’ §iI(t) the quantities corresponding to

PiI(t) for the Zi(t), Ei(t) processes respectively, it follows as before that

19



ol

(3.9) P(8) < P o (t) < Byo(E)
and also (3.7) holds for Eﬂ(t), ?il(t) with G, (t) replaced by G_(t),
GB(t) for all 1 < i € m, respectively.

In [3] p. 528, referring to the numbering system there, inequalities
(G.14), (3.15) hold as before, and relations (3.10), (3.12), hold with the

term

v,
(3.10) , T == (1-6_(t) = c(1-G (t))
i€g-1? @ @
added to the respective r.h.s., and subtracted from the r.h.s. of (3.16),
and relations (3.11), (3.13) hold with
v

(3.11) . EEJ_I _ai (1-6,(£) = c(1-G4(t))

added to the respective r.h.s., and subtracted from the r.h.s, of (3.17),
(3.12) 0 <ecx<l.

The basic results of Lemmas 2, 7, 8 of [1] used in [3] p. 530 remain
true if the term 1-G(t) is replaced by (1—c)(1~G(t)) in équation (2.3) p. 385,
(3.2) p. 389, (3.3) p. 386 of [1]. That lemma 2 of [1] still holds is
clear since the argument there depends solely on monotonicity considerations
unaffected by this substitution. The new lemma 7 of [1] p. 389 should
now be stated as:

If

'S
(3.13) x(t) ~a = (L-¢) (1-G(t)) + j x(t-y)dG(y),
0

20



Then

x(t) _a L
(3.14) e
where
(3.15) U o= J £dG (L),

O
and as t = «
3 .

(3.16) £t (1-G(t)) — 0.

That this follows is well~known or can be seen by the methods of this
paper as follows.

One may verify that

(3.17) : £(t) E&t
satisfies
t
{(3.18) f£(t) =a +r{t) + I F(t-u)dG{u)
0
where
1
(3.19) r(t) = o(*g).
t
Then, using the iteration scheme
(3.20) X(n)(t) = (1-¢) (1-G(t)) + JZx(n_l)(t-u)dG(u)

it may be verified that as t - », for

21



(3.21) X(O)(t) = at/M 2

(3.22) % 1% (t) -y (] = o(1)
for all n, and
(3.23) T ke =Xy ()] = o

for all n sufficiently large with respect to t. -

Then (3.17)-(3.23) yield the new lemma 7.

The lemma 8 uses lemma 7730 remains true since the new lemma 7 has
the same conclusion.

The other results embodied in revised lemmas of [1l] remain true for
reasons of monotonicity or convexity which are unchanged, or by reasoning
as just above.

Hence the results of [3] pp. 530 ff. remain true with the indicated

modifications and (3.5) holds. But then (2.8) holds with the argument

Y _ - _
{(3.24) hiz(l PJ_I(t)) hiz(l P(t))
where

(3.25) l:EJ~I(t) = (1mP1’J-I(t)’1_PZ’J—I(t)’."’I‘Pm,J—I(t))’

and all the results of Theorem 1 go through as before with modified (2.8)

written

(3.26) P (t) = 6ij(1—Gi(t)) + JtZIxiL(l—PJ_I(t—u))PEjI(t—u)dGi(u).

151 0

22



This suffices to indicate the essential modifications that yield (3.1).

To indicate (3.4), an example will illustrate the general method., Let

(3.27) Hij (t) = PiNij (t) = 1].
Note that
(3.28) e = Hij(t)
s=l-e,
I |
where

(3.29) E:Sj = (1110111) with the zero in the jth place.
Apply (3.28) to (2.63) to yield, noting

(3.30) H(lze,,t) = 0,

that

m
(3.31) Hij(t) = Gijhi(O)Gi(t) + (1~61j)Jz zzlhiz(O)sz(t—u)dGi(u).

A consistent sequenct {cij} satisfying, for 1 < i, j < m

m
(3.32) 5 = 6ijhi(0) + (1~6ij)£§1hi£(0)c£j
is constructed, since note that
(3.33) 1> Hij(t) > Qij(t) = P[Ei(t)==§j] = c>0,
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Then the method of Theorem 1 may be employed by defining the iterative

scheme

’ -m
(3.34)  H g 47y () = 8, b, (0)G, (£) + (1-513.)J't PATIOLTSICELINC

0
with
(3.35) Hij(O)(t) = Cij'
It remains to show that, for t — «
(3.36) . |Hij a1y (B~ By gy ()] = o(D)
for all n, and
(3.37) lHij (£) - H, (n)(t)l = o(1)

for sufficiently large n with respect to t. Thus (3.28)-(3.37)
éuffice for (3.27). The general case follows by a tedious induction on
orders of derivatives, using Leibniz' rule to deduce the general form of
the integral equation for the quantity (3.4) obtained by taking appropriate
partial derivatives of (2.63), following the arguments from (2.65) to
(2.69), and will not be given.

The method can be applied to multi-type sub- and supercritical

cases also.
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